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Abstract

A primal-dual active set method for quadratic problems with bound constraints is presented which
extends the infeasible active set approach of Kunisch and Rendl [17]. Based on a guess of the active
set, a primal-dual pair (z,«) is computed that satisfies stationarity and the complementary condition.
If  is not feasible, the variables connected to the infeasibilities are added to the active set and a new
primal-dual pair (z,«) is computed. This process is iterated until a primal feasible solution is generated.
Then a new active set is determined based on the feasibility information of the dual variable .. Strict
convexity of the quadratic problem is sufficient for the algorithm to stop after a finite number of steps
with an optimal solution. Computational experience indicates that this approach also performs well
in practice.

Key words. primal-dual active set methods; quadratic programming; box constraints; convex
programming

1 Introduction

We consider the convex quadratic optimization problem

min J(z), (1a)
subject to x < b, (1b)

where 1
J(z) = §$TQ3«" +q'x, (2)

@ is a positive-definite n xn matrix, and b, ¢ € R™. This problem is well understood from a theoretical point
of view with global optimality characterized by the Karush-Kuhn-Tucker conditions, see (3) below. The
problem appears as a basic building block in many applications, for instance in the context of sequential
quadratic optimization methods to solve more general nonlinear problems. It also appears in problems
from mathematical physics (obstacle problems, elasto-plastic torsion) and computer science (compressed
sensing, face recognition).

First order methods based on projected gradients are among the oldest approaches to the problem.
We refer to Figueiredo et al. [8] for a recent paper on the topic. Active set and primal-dual interior point
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methods are among the other major solution strategies to solve (1). D’Apuzzo and Marino [6] propose a
potential-reduction interior point method for (1) with box constraints and focus on parallel implementation
issues. Kim et al. [16] introduce a specially taylored interior point method with a preconditioned conjugate
gradient algorithm for the search direction and apply it to large sparse l;-regularized least squares problems,
which can be formulated in the form (1). The classical active set approach is investigated by Moré and
Toraldo [19] and Dostal and Schoberl [7], who combine it with projected gradients. Bergounioux et al. [1, 2]
introduce an infeasible active set approach for constrained optimal control problems, which was further
investigated by Kunisch and Rendl [17] for general convex quadratic problems of type (1). Hintermiiller et
al. [12] show that this primal-dual active set approach can in fact be rephrased as a semi-smooth Newton
method. This leads to strong local and global convergence results in the case that the Hessian @ satisfies
some additional properties. In [12] it is shown that the method converges globally if @ is an M-matrix,
and it converges superlinearly if the starting point is sufficiently close to the optimum. In [17] global
convergence of this infeasible active set method is shown under a diagonal dominance condition on Q.
Convergence in the general case can not be ensured, as shown by Ben Gharbia and Gilbert [9] for the case
of P-matrices of order n > 3 and Curtis et al. [5] in case of general symmetric positive definite matrices
of order n > 3.

The main goal of this paper is to investigate modifications of the Kunisch-Rendl-Algorithm (KR-
Algorithm, [17]) to make it globally convergent for all problems with positive definite Hessian Q). Glob-
alizing this method in the context of semi-smooth Newton methods has also been proposed by Byrd et
al. [4] and by Curtis et al. [5]. In [4], global convergence is insured by maintaining descent directions
in combination with a safeguarding procedure proposed by Judice and Pires [15]. In [5], a more general
setting is considered, which includes also linear equations in the constraints. A special treatment is given
to variables which change index sets very often, leading to global convergence. A common feature of these
approaches and ours is that the change in the size of the active set from one iteration to the next is not
bounded, which makes it attractive for large scale problems. The approaches differ however in the way,
global convergence is insured.

Our new feasible active set method works as follows. Based on a guess on the active set, a primal-dual
pair (z,«) is computed that satisfies stationarity and the complementary condition. If z is not feasible,
the primal variables outside their bounds are added to the active set and a new primal-dual pair (z,a)
is computed. This process is repeated until a primal feasible solution is generated, thereby ending one
iteration. Then a new active set is defined based on the dual feasibility information of «.

The new approach inherits the preferable features of the KR-Algorithm, like simplicity (no tuning
parameters), finding the exact numerical solution, insensitivity with respect to initialisation. Moreover
strict complementary is not required to be satisfied. We show convergence for any positive-definite @
while the original KR-Algorithm is only guaranteed to converge under additional properties of @) such as
Q@ being an M-matrix [12] or having some form of strong diagonal dominance [17].

The paper is organized as follows. At the end of this section we summarize notation used throughout
the paper. In Section 2 we repeat the relevant details of the KR-Algorithm. An in-depth analysis of the
convergence behaviour of the KR-Algorithm is contained in Section 3. The main theoretical contributions
are contained in Section 4, where we extend the KR-Algorithm and prove the finite termination of the
modified KR-Algorithm for any problem of type (1). In Section 6 we show the efficiency of the new
algorithm by comparing it to the KR-~Algorithm, standard active set, interior point and gradient projection
methods on a variety of test problems.

Notation: The following notation will be used throughout. We write @@ > 0 to denote that the matrix
Q is positive-definite. For a subset A C N :={1,...,n} and z € R" we write z 4 for the components of
x indexed by A, i.e. x4 := (;)ica. The complement of A with respect to N is denoted by A. If Q is a
matrix and A, B C N, then Q4 5 is the submatrix of @, given by Qa8 = (¢ij)ica,jes. We write Q 4 for
Qa,4. For a,b € R™ we write a o b to denote the vector of element-wise products, i.e. aob:= (a;b;)ien-



2 The KR-Algorithm from [17]

It is well known that x together with a vector & € R™ of Lagrange multipliers for the simple bound
constraints furnished the unique global minimizer of (1) if and only if (z, «) satisfies the KKT system

Qr+q+a=0, (3a

ao(b—x)=0, (
b—x >0, (3¢
a>0. (3d

The crucial step in solving (1) is to identify those inequalities which are active, i.e. the set A C A, where
the solution to (1) satisfies 4 = b4. Then, with Z := N\ A, we require az = 0 for (3b) to hold.

The starting point for the present paper is the infeasible active set method from Kunisch and Rendl
[17], which we call the KR-Algorithm for short. Let us briefly describe this method.

The KR-Algorithm is iterative, generating a sequence of active sets A C A, until an optimal active
set is reached. Specifically, given A and Z := N \ A, the 2n equations (3a), (3b) are solved under the
condition z 4 = by, az = 0. To simplify notation we introduce for a given A the following set KKT(.A) of
equations:

KKT(A) Qr+q+a=0, z4=by, ar=0.

The solution of KKT(.A) is given by
zA=ba,wr =—Q7 ' (qz + Qr.4ba), (4)

ar =0,a4 = —q4 — Quba — Qazrr. (5)

We also write [z,a] = KKT(A) to indicate that z and « satisfy KKT(A). In some cases we also write
= KKT(A) to emphasize that we only use x and therefore do not need the backsolve to get . When we
only carry out the backsolve to get «, we write @ = KKT(A), and it is assumed that the corresponding
x is available. The set A is called optimal if [z, a] = KKT(A) also satisfies z < b, > 0 since «x is then
the unique solution.

The iterates of the KR-Algorithm given in Table 1 are well defined, because KKT(A) has a unique
solution for every A C N, due to @ = 0. The update rule for the next set

B:={i:z;>b; or a; >0} (6)

includes elements from the previous active set where the dual variables have the right sign and also inactive
variables which are outside their bounds.

KR-Algorithm
Start: A CN
while A not optimal
[z,a] = KKT(A), A<+ {i:z; >b;ora; >0}

Table 1: The iterates of the KR-Algorithm.

We are going to modify and extend the convergence arguments from [17], so it will be useful to briefly
recall the basic ideas from [17]. The key idea to show finite convergence consists in establishing that some
merit function will decrease during successive iterates of the algorithm. This will ensure that no active set
will be generated more than once.



Let us look at two consecutive iterations. Suppose that some iteration is carried out with the active
set A C N. Then we get

[z,0] = KKT(A), B:={i:2z; >b; or o; >0}, T =N\B, [y,8] = KKT(B).

It is a simple exercise to verify that the active sets change in every iteration unless the current primal and
dual variables are optimal and therefore the KR-Algorithm stops, see [17]. Let us take a look at a small
numerical example to further clarify the workings of the KR-Algorithm:

11 1/2 ~10 8
Q=11 4/3 13|, q=[-10], b=]1
1/2 1/3 3 -10

The given data yields the active-set-transition-graph depicted in Figure 1.

B e

Figure 1: Active-set-transition-graph of the KR~Algorithm for a small numerical example with optimal

A={1,2}.

We close this section with an investigation of the change in the objective function of two consecutive
iterations shown in [17].

Lemma 1. [17] Let x and y be the primal solutions of two consecutive iterations. Then, we have

1

J(y) = J(x) = =5z =)' Qw —y) — (v —y) " (Qu+0).

When moving from set A to set B, the elements of A will either belong to 15 or to J. We denote these
sets by By and J; respectively. In a similar way the elements of Z will also either move to B or to J. The
respective sets are denoted by By and J5. Thus,

B=BUBy, J=7UJ.

In Table 2 we summarize the relevant information about x,y,« and S of the KR-Algorithm for two
consecutive sets A and B. A nonspecified entry indicates that the value of the associated variable cannot
be known for certain. Using this information we can work out the change in the objective function.

Lemma 2. [17] Let (z,«), (y,8) and B be given as above. Then, we have

1) = 7w = =0 (B Y-

If By = (), then J decreases, but there is no reason that this should hold in every iteration. Since
the primal iterates are not required to be primal feasible, the objective function values of two consecutive
iterates may move in an uncontrolled fashion. Thus in [17] a merit function is introduced which also
includes a measure of primal infeasibility. The behavior of such merit functions is investigated in the next
section.



By ‘ Ji | T2 | B

x| =b [<b[>b
y | =b ? =b
a|>b[<b[ =0
I -0 |

Table 2: Analysis of two consecutive primal-dual iterates of the KR-Algorithm.

3 Convergence for different merit functions

In this section we recall the convergence result from [17] and discuss some extensions and modifications
which will be the basis for a new method discussed in detail in the following section.

Let us introduce r(z) := —max(z — b,0) < 0 and the projection Ilg(x) of x onto the feasible region
Q={zr e R"”: 2 <b}. lIg(x) can also be written as

bi7 T > bia

Mo(x) =x+r(z) = { (7)

T, o < b
In [17] it is shown that the following merit function
c
Me(z) = J(2) + 5 [Ir(2)]? (8)

decreases under the conditions (C1) or (C2) described below. We recall the precise statement of this
result and need some more notation to do so. Let Apin := Amin (@) > 0 denote the smallest eigenvalue
of Q. Further, let v := max{|[|[Q %[l : A C N,A # 0,4 # N}. We also use the diagonal matrix
D := diag(q11, - - -, gnn) consisting of the main diagonal elements of @ and define dyi, := min{di1,...,dnn}.
Finally let r := ||Q — D|| denote the norm of @) with the elements from the main diagonal removed. Now
we can state the following sufficient conditions (C1) and (C2) for a strict decrease of merit function (8)

2
condition (C1) cond(Q) < <)‘m‘n> _1,
v
d . 2
condition (C2) cond(Q) < (mm> _1,
r

where cond(Q) = Il

>\min

Theorem 3. [17] Let (x,a), (y,53) be two consecutive primal-dual iterates of the KR-Algorithm, and
¢ > ||QI + Amin- If (C1) holds, then we have

2(Me(y) — Me(2)) < erlly — 2| <0,

2
with ¢1 := c( v ) — Amin < 0. Similarly, (C2) implies that

Amin

2(Me(y) — Me(2)) < cally — 2| <0,

2
with cg = ¢ ( z ) — Amin < 0. In both cases the KR-Algorithm stops after a finite number of iterations

dmin

with the solution for every b,q € R™.



Let us now consider the following merit function
Le(x) = J(2) + 5r(@) T Qr(a). (9)

Our aim now is to compile conditions for a decrease of (9) with ¢ = 1 and use this knowledge to develop
an algorithm with guaranteed convergence behaviour. The merit function L; has the following attractive
property.

Lemma 4. Let [x,a] =KKT(A) be a primal-dual iterate with Ig(x) given in (7). Then we can rewrite
the merit function (9) with ¢ =1 as the objective value of the projection Ilg(x) of x on the feasible set:

Li(z) = J(Ilg(z)).

Proof. First we rewrite the term

3@ Q) = (@) Qrla) () o = o) Qr(a) + () (Qu +4) = J(r(@) +r(x) T Q

by using (3a) and the fact that r(z); = 0 for i € A and «; = 0 for ¢ € Z. Now we can conclude by applying
(9) and (2)

Li(z) =J(z) + %T(l‘)TQT(Zﬂ) =J(z)+ J(r(z)) + r(x)TQx =

1 1 1 1
=30 Qu gt (@) Qr(e) + 4 r(w) + L) Qu+ LaT Qr(a) =
1
=5@+7@) Q@ + (@) +q" (z+7(x) = J(z + r(x)) = J(Ha(x)).
O
The change of this merit function for two consecutive iterations has the following form.
Lemma 5. Let (z,a), (y,8), r(y) and Bs be given as above. Then we have
1 1
Li(y) = Ln(z) = =5 (= =) jQu (= — y)g + 57 (1) 7Qs7(v)7-
Proof. Using Lemma 2 and the following identities
r(y); =0 for ¢ € By, Ba, r(x); =0 fori € By, By
r(z); = (x —y); for i € By, (x—y)i=0forie By
we get
Li(y) = Li(2) = =5 (= — 9505, (¢ — ¥)g; + 5 (2~ ¥)p, @5 (¢ — )5+
1 1 1 1
+ 57 W 5 Qe WE — 5 (0~ 1)5,Q8, (@ — yY)s, = —5 (@~ 1) ;Qs(r —y)7 + ;W) ;s (W)
O

We note that the first term is negative. Moreover r(y) = 0 in the case that y is primal feasible. In the
case where y is not primal feasible, it is possible that the merit function increases. This motivates us to
modify the original KR-method to generate only primal feasible iterates.

Remark 1. Finally let us recall a small example from [5] that causes the KR-Algorithm to cycle for most
starting active sets. We are given the following problem data:

4 5 =95 2 0
Q = bl 9 =5 y 4= 1 s b=1{0
-5 -5 7 -3 0

The corresponding active-set-transition-graph is depicted in Figure 2.



Figure 2: Active-set-transition-graph for a small numerical example with optimal A = {2,3}. The KR-
Algorithm runs into cycling for 6 out of 8 active starting sets.

:

4 A new primal variant of the KR-method

Let us call A C N a primal feasible set, if the solution z to KKT(.A) is primal feasible, z < b. Given a
primal-feasible set A, our goal is to find a new primal-feasible set, say B. We now describe that procedure.
Suppose that A C N is a primal feasible set. Then the KR-method would start a new iteration with

the set
Bs:={ie A:a; >0}. (10)

The set B does not need to be primal feasible, because [z,a] = KKT(B,) may have i € B, such that
x; > b;. To turn it into a primal feasible set B, we carry out the following iterations.

B« B,
while B not primal feasible (11)

This iterative scheme will clearly terminate because B is augmented by adding only elements of By. The
modified KR-method starts with a primal feasible set A, then generates a new primal feasible set B as
described above. Then a new iteration is started with B in place of A. Let us recall the small numerical
example from Section 2 to further clarify the workings of the modified KR-Algorithm. The given data
yields the active-set-transition-graph given in Figure 3.

{3} {3t {23}

Figure 3: Active-set-transition-graph of the modified KR-Algorithm for the numerical example from Sec-
tion 2 with optimal A = {1,2}. The yellow circles correspond to primal feasible sets and hence could
potentially have ingoing edges.

We apply the modified KR-Algorithm on the data that causes the KR-Algorithm to cycle, and note
that it avoids cycling as can be seen from the active-set-transition-graph depicted in Figure 4.
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@ {2,3} —— {1,3}

T
O
Figure 4: Active-set-transition-graph of the modified KR-Algorithm for the numerical example from Sec-
tion 3 with optimal A = {2, 3} that causes the KR-Algorithm to cycle.

{1.2}

In the following we will prove convergence of the modified KR-Algorithm for Q = 0. Note that the idea
of monotonic decrease combined with the minimization on the expanding active sets goes back at least to
B.T. Polyak and his seminal paper [21] in 1969. Before going into the technical details we give an outline
of the proof idea and the workings of the modified KR-Algorithm proposed above by means of the flow
chart in Figure 5.

Let us start the convergence analysis with taking a closer look at the change of the objective function
between two consecutive iterations given by the primal feasible sets A and B.

We let [z, ] =KKT(A) and [y, f] =KKT(B). Using Lemma 1 and Qy + ¢+ 8 = 0, we conclude

1

Jy) = J(@) = =@ =) Q@ —y) + (z —y)"B. (12)

The first term on the right hand side is nonpositive, so we need to investigate the second one in detail. In
order to do so, we have to take a closer look at how By and B change relative to A. Formally, the situation
looks as indicated in Table 3.

A | I
BS \75
B | B || J]B

Table 3: The change from the primal feasible set A to the primal feasible set B = B, U B U Bs.

To explain this diagram, we note that by definition we have B; C A and J, := N \ Bs. The extension
of Bs to a primal feasible set B is done by adding either elements from A\ B, which are contained in
B, or from Z, which are contained in By. Thus J3 = A\ (Bs UB;) and J> = Z \ By. What do we know
about [z, a] =KKT(A) and [y, 8] =KKT(B)? Clearly x4 = b, 7 < bz and az = 0. The definition of B,
yields ap, > 0 and aqng, <0. The set B is the union of B, By and Bs, and J := N \ B. Hence we have
yB = bp,ys < by and s = 0. This is summarized in Table 4.

Now we provide some additional useful properties for two consecutive iterations given by the sets A
and B.

Lemma 6. Let A be a primal feasible set. Then Bs C A and Bs = A if and only if A is optimal. If A is
not optimal, then A# 0, A# B and x —y # 0.

Proof. Bs C Aholds due to (10). If A is optimal then all elements in A are dual feasible and hence B = A.
If Bs = A then all elements in A are dual feasible. As the algorithm ensures all other KKT conditions



Start with active set A ’

|

Compute the primal-dual pair
(z,a) = KKT(A)

A+ Aufic A:z; > b}

l

(z, @) primal

no

feasible?

(z,a)
optimal?

no

yes

Reduced set of constraints,
hence restart the algorithm

Stop

J(y) < J(x) due to Lemma 8

Solve recursively the subproblem
with the bound on

A+ Ag U By
with Ao # 0, Ag C A,
(BiUJ1)\ Ao #0

B+ {ie A:a; >0}

Compute the primal-dual
pair (y, 8) = KKT(B)

(y,8) primal
feasible?

(¥, 8)

on:bon T 1, Sbﬂo

no

and By is the optimal set Case 3
for the subproblem with

A+ B

yes

Case 1

no

B%BU{iEE:inbi

}

|
As A is not optimal, B is al

ways

different to A due to Lemma 6

Case 2 | Yes

14l =1
J(y) < J(z)

optimal?

yes

Stop

Figure 5: Outline of the workings of the modified KR~Algorithm.

A = {j} removed.




A T
Bs | Bi | Ji | J2 | B2
=b|=b|=b|<b| <b
b|l=b|<b|<b|=0D
0| <0|<0]=0]=0
? =0|=0 ?

D Qw8
LIV

Table 4: Information on z, y, « and 8 associated to A and B. The questionmarks indicate that the sign

of B can not be specified for the respective sets.

including primal feasibility throughout all iterations, A is optimal. If A = @ then the unconstrained

optimum is feasible and hence A is optimal.
Now let us suppose that A is not optimal and A = B. Then J; = By = () and hence Jo = J =7 and
Bi = A\ B, # 0 as Bs # A. Due to the workings of the modified KR-method the following implications

hold
[z,0] = KKT(A) = ag, <0,
[y7ﬁ] = KKT(BS) = 651 = O

As 7 = J we can substitute the primal variables associated with Z by

rr = —Q7 ' (qr + Qr.5.b5, + Qz.8,b8, ), (14)
yr = —Q7' (g + Qz.5.b5. + Q1.58,YB,)-

Throughout the algorithm the equations Qz 4+ ¢ + « = 0 hold. Using (13) we obtain

QBl,N bB1 + qu = _aBl > 07

b,
QN |yB, | + a8, = —PB, =0.
yr

Next applying (14) to the above equations yields

QB,.8.b5, + Qp, b5, — Q5,707 (a7 + Qr.8.b5. + Qr.5,b85,) + 08, >
QB,,8.b5. + Qp,ys, — QB, Q7' (47 + Qz,8.b5, + QT.5,YB,) + a8, -

Simplifying the above inequality gives
(QB1 - QB1,IQ£1QI,31)(b31 - yBl) > 0. (15)

The matrix (Qp, — @B, zQ7 1Q1751) is positive definite due to the Schur-complement lemma. To assure
A = B the inequality
bs, =y, <0, (16)
has to hold. Combining (15) and (16) yields a contradiction to (Qp, — Qp5, 7Q7 ' Qz.5,) = 0:
(bs, —y5,) " (QB, — Q5, 7Q7'Qz.5,)(bs, —ys,) < 0.

Finally using Table 4 we have 7 < bz, y7 < by, x4 =0ba, yg =bgand hencex—y # 0for A # B. O

10



Asz—y=0onB;UB; and 3 =0 on J; UJ, it follows that (z —y)' 8 = EieBQ(az — y); 8. Since
(x —y); < 0 on By, the contribution of (z —y) ' B is guaranteed to be nonpositive in case 3 > 0 on By. We
summarize the discussion in the following lemma.

Lemma 7. Let x,y,a, 8 and By be as above. Then

J) = I@) =~ =) Qe —y) + Y (e — )b

1€Bo
Moreover, (x —y)p, < 0.

Remark 2. We observe that B; < 0 for i € By occurs in a situation where i € T N Js. Thus x;
was inactive at the beginning of the iterations, corresponding to set A. Then in the course of removing
primal infeasibility, x; went above b;, resulting in i € B, more precisely, i € By. But then the solution
ly, B] =KKT(B) yields 5; < 0, hence the objective function would improve if x; would be allowed to move
away from the boundary again. This situation is peculiar, but there is no mathematical reason why it
should not occur.

We have just seen that we have no means to avoid J(y) > J(x) using the current setup. To avoid
cycling, we therefore need to take additional measures in case J(y) > J(x). Let us assume A is not optimal
for the following case distinction. We first recall that in this case |./A| > 1 due to Lemma 6. We consider
the following cases separately. Let x,y, a, 8 and A and B be as above.

Case 1: J(y) < J(x). In this case we can set A <— B, and continue with the next iteration.

Case 2: J(y) > J(x) and |A| = 1. The set A = {j} is primal feasible. Since z is primal feasible, but
not optimal, we must have o; < 0. Thus the objective function would improve by allowing z; to move
away from the boundary. Hence in an optimal solution we have x; < b; and thus a problem with only
n — 1 constraints which we solve by induction on the number of constraints.

Case 3: J(y) > J(z) and |A| > 1. In this case we will again solve a problem with less than n
constraints to optimality. First suppose that Bs # 0. In this case Bs # A, due to Lemma 6. Set Ag := Bs.

In the other case, where B, = 0, we know that |B1 U J1| > 1, because |A| > 1. In this case set Ay = {j}
for some j € By U J1.

In both cases we have the following situation: Ag # 0, Ag C A and (B1 U J1) \ Ag # 0. We now solve
(recursively) the smaller subproblem with x4, = ba,, z4, < b4, which has |4| < n bound constrained
variables. Its optimal active set is denoted by By. We set B := Ay U By and get [y, 5] =KKT(B). We
note that the solution [z, o] =KKT(A) is feasible for this subproblem but not optimal, because «; < 0 for
i€ (BiUJ)\ Ao # 0. Therefore J(y) < J(x) because y is the optimal solution of the subproblem. We
summarize the discussion in the following lemma.

Lemma 8. Let A be a primal feasible index set with nonoptimal solution [x,a] =KKT(A) and index
partition as in Table 4 and assume |A| > 1. Then there exists Ag # 0, Ag C A and (B U J1) \ Ao # 0.
Let By be the optimal active set for the subproblem with x4, = ba,, =45, < bg, and consider B = AgU By.
Then J(y) < J(x) holds for |y, B] =KKT(B).

We summarize the modified KR-method, which produces primal feasible iterates in each iteration, in
Table 5. Since the objective value strictly decreases in each iteration, we have shown the following main
result of this paper.

Theorem 9. The modified KR-Algorithm as given in Table 5 terminates in a finite number of iterations
with the optimal solution.

11



Modified KR-Algorithm

Input: Q = 0,b,de R". ACN.
Output: optimal active set A.

x = KKT(A).
while A not primal feasible: A<+ AU{i € A:x; > b;}; © = KKT(A); endwhile
a = KKT(A).

while A not optimal
B+ {ieA:a; >0}, y=KKT(B).
while B not primal feasible: B+« BU{i € B:y; >b;}; y = KKT(B); endwhile
Case 1: J(y) < J(z)
A+ B.
Case 2: J(y) > J(z) and |A| =1
Solve recursively the subproblem with the bound on A = {j} removed.
Case 3: J(y) > J(z) and |A| > 1
Select Ag such that Ay # 0, Ag € A and (B UJ) \ Ag # 0.
Let By be the optimal active set for the subproblem with x4, = ba,, =4, < b4,

A .A() U Bo.
a = KKT(A).
endwhile

Table 5: Description of the modified KR-Algorithm.

5 Practical Comments and Extensions

Remark 3. There exist many ways to choose Ag in case 8. In our implementation we use the following
rule to determine Ap.

B, if Bs # 0
Ao=qj€Br ifBs=0, Bi#0
jEjl ifBSZQ),Bl:@

The intuition for this choice is as follows. In case that By is nonempty, we set Ag = Bs because the
elements in By were active in the previous iteration and their dual variables had the correct sign. It seems
therefore plausible to fix them again to their bounds to define the subproblem. Otherwise we know from
Lemma 6 that By U J; is nonempty. If possible, we select an element from By arbitrarily and fix it to its
bound, otherwise an element from [Jy is fixed.

Denoting the sign constrained variables in the subproblem by S := N\ Ag, the subproblem is again a
convez quadratic problem with bound constraints and given as follows

i 1
min gngs,sws + (g5 + QN 400 4,) " s,

subject to xs < bg.

As a starting active set of the subproblem we choose all elements from By U By for which the associated
dual variables are > 0.

Remark 4. In our implementation, case 2 is carried out as follows. If A is not optimal and |A| = 1, we
remove the bound of the associated primal variable and then restart the algorithm with the current active
set. In this way we make use of the current information to restart.
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Remark 5. Regarding the subproblems generated in cases 2 and 3, one may be tempted to avoid finding the
optimal solution and return from the subproblem, once J(y) < J(x). We experimented with both strategies,
but our computational experiments showed that prematurely returning from the subproblems resulted in an
overall increase of computation time, especially on “difficult” instances.

Remark 6. We found examples where both “Case 2” and “Case 3” occur. Hence all cases discussed in
the convergence analysis are also of practical relevance. Let us also emphasize that we cannot guarantee
a polynomial running time for the modified KR-Algorithm as one might already expect for combinatorial,
active set methods (see e.g. the simplex algorithm,).

Remark 7. We also investigated a variant of our algorithm, where dual instead of primal feasibility is
assured in every iteration but we do not describe this variant in detail because it has the following drawbacks
compared to the primal version. First one has to solve KKT(A) in each iteration, and not only compute xz.
Secondly the optimal inactive set is in general approached by supersets, resulting in higher computation
times per iteration. Finally we observed experimentally that assuring primal instead of dual feasibility
results in fewer iterations on average.

Remark 8. The ideas used for proving Theorem 8 cannot be generalized to both upper and lower bounds,
i.e. to constraints of the form a < x < b because of the possible existence of indices that are active at the
upper/lower bound at iteration k and are active at the lower/upper bound at iteration k + 2. This would
spoil the analysis used in Theorem 3 (for a detailed discussion of this issue see [15]).

The convergence argument for the modified KR-method presented in the previous section can be gener-
alized to convexr QPs with box constraints a < x < b, for details see the Appendiz.

6 Computational Experience

In this section we compare the modified KR-Algorithm to the KR-Algorithm and standard conjugate
gradient, active set and interior point methods on several benchmark sets. In all the tables below, the
column labels have the following meaning.

e [KR] denotes the KR-Algorithm and [modified KR] is our modified KR-Algorithm. [quadprog] de-
notes the MATLAB function quadprog, which incorporates a reflective trust region method. Finally,
[CPLEX-IP| and [CPLEX-AS] stand for the interior point and active set solvers of ILOG CPLEX
12.1, see [14].

e The condition number of @) is estimated with the MATLAB command condest. Its average is given
in the column labeled cond(Q).

e The average number of outer iterations is denoted by iter. In case of the KR-method it agrees with
the number of times the system (4) is solved to get 7.

e In each iteration a linear system of size n; := n —|.4| has to be solved to get zz. The column labeled
nz contains the average system size.

e In the modified KR-method it may take several steps in (11) until a primal feasible x is reached. In
the columus labeled solve and maz solve we show how often the system (4) was solved on average
and in the worst case. We recall that this reflects the main computational effort of our method.

e The column labeled fail contains the number of trials, where the KR-method ran into a cycle and
failed to solve the problem.

e Finally mds gives the maximal depth of levels of subproblems (recursive calls) in the modified KR~
method.
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e In some tables we also provide the average density of @), which is denoted by dens.

e All experiments were conducted on an Intel Xeon 5160 processor with 3 GHz and 2 GB RAM. The
corresponding Matlab code for generating all instances and solving them with the various methods
discussed is available from http://philipphungerlaender.jimdo.com/qp-code/.

6.1 Randomly Generated Problems

First we investigate the computational overhead of globalizing the original KR-Algorithm. We compare it
to the original KR-Algorithm for randomly generated problems (see [17, Section 4.1.]) of fixed dimension
n = 2000. We use the same generator for the data and vary the matrix @ by making it increasingly
ill-conditioned. The random instances are generated starting with a matrix (o which is a sparse positive
semidefinite and singular matrix. The matrix @ is obtained from Qg by adding a small multiple of the
identity matrix I,

Q:QO+EI7

where € € {1,107°,1071%,10~*}. The Table 6 summarizes the performance of the two algorithms. Each
line is averaged over 2000 trials for each value of e. We used the initial active set A" := A (initial active
set contains all indices) to avoid solving a full system of order n.

[KR] [modified KR]
cond(Q) | log(e) || iter | ny | fail || iter | solve | max solve | n; | mds
~ 103 0 584 | 828 0| 5.07 | 9.48 13 | 854 0
~ 108 -5 || 9.03 | 888 0| 6.67 | 12.10 40 | 868 4
~ 1013 -10 || 9.05 | 889 0| 6.68 | 15.06 32 | 686 1
~ 107 -14 || 9.05 | 889 0| 6.68 | 15.08 32 | 686 1

Table 6: Comparison of KR- and modified KR-Algorithm, initial active set is A" and n = 2000. Each line
is the average over 2000 trials. The column max solve provides the maximum number of solves during a
single trial.

The modified KR-~Algorithm reduces the average number of outer iterations compared to the KR-
Algorithm at the cost of solving the primal system for the inactive variables more often in order to reach
primal feasibility. The average number of solves for the orginal KR-Algorithm is around 9, while it is
around 15 for the new method. The maximum number of solves during a single run is not much higher
than twice the average. We consider this an acceptable price to pay for guaranteed convergence. The
maximal depth of levels of subproblems of the modified KR-Algorithm stays below 5 even for the most
ill-conditioned data. It is surprising that the original KR-method does not cycle in these experiments even
though in principle this is possible.

We also experimented with different starting active sets but observed that the initial starting set does
not seem to have a serious influence on the overall performance of the algorithms. Therefore we suggest to
use the full initial active set to avoid solving a linear system of dimension n. The effort for the backsolve
in (5) to get the dual variables is negligible.

In Table 7 we compare the modified KR-Algorithm to the interior point and active set solvers of ILOG
CPLEX. We use the same random data as above with ¢ € {1,1071°}, vary n between 2000 and 50.000
and take the average over 10 instances. The matrix g is generated as a matrix with bandwidth = 100.
In this way we are able to go to larger sizes for n.

The modified KR-Algorithm is superior to both CPLEX methods in terms of computation times, where
the relative gap between the methods is growing with problem size. It seems especially remarkable that
the modified KR-~Algorithm needs only about one fifth of the number of iterations of the interior point
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n | cond(Q) || [CPLEX-IP] [CPLEX-AS] [modified KR]
iter | time iter time || iter | time | mds
2000 ~ 103 || 16.2 1.34 1000 0.49 5.0 0.29
2000 ~ 1013 || 214 1.69 1063 0.53 || 6.5 | 0.42
10000 ~10° || 20.8 8.95 5024 8.03 5.2 1.77
10000 ~ 1013 || 27.1 | 11.25 5273 9.04 || 6.6 2.44
50000 ~10° || 26.2 | 66.78 || 25243 99.86 5.8 8.32
50000 ~ 10" || 32.1 | 80.13 || 26263 | 108.13 || 6.9 | 10.68

o|lo|o|lo|o|o

Table 7: Comparison with standard active set and interior point methods, each line is the average over 10
trials.

solver and that the number of iterations is only slightly influenced by the size and the condition number
of the instances. In summary this means that the modified KR-Algorithm solves on average fewer primal
systems than the interior point solver to find the optimal solution.

The outcome of the tests is exactly what one would expect: The interior point method always solves
the full system of order n and needs more iterations, so one would expect the active set methods to be a
lot faster, as they solve on average fewer (and smaller) systems. Further comparisons with interior point
methods therefore do not provide additional insight as long as our number of solves stays well below 30.

Next we consider randomly generated problems in the style of [5] in Tables 8 and 9. Specifically, we
generated () via Matlab’s sprandsym routine. Both the average density and the average condition number
are given in the following two tables. Then we generated the optimal solution x via the Matlab randn
routine. With the solution in hand, we choose the objective linear term coefficients, lower and upper
bounds so that at the optimal solution the number of

e the active variables and the inactive variables are roughly equal for the case with one-sided bounds
and

e the active variables on the upper bound, the active variables on the lower bound and the inactive
variables are all roughly equal for the case with box constraints.

In Tables 8 and 9 we compare again the KR-Method, the modified KR-Method and Matlabs function
quadprog. The column labeled error gives the relative error of this method with respect to the optimal
objective value,

obtained objective value - optimal objective value
error = .
optimal objective value

Each line represents the average over 10 trials. These are difficult examples for the active set methods.
The original KR-method fails on larger instances, once the condition number gets larger. In these cases
the corresponding iter-column gives the average number of outer iterations for those problems that were
solved successfully by the KR-~Algorithm. The modified KR-method needs to go into recursions, but the
depth of the recursion is small, no larger than 4. We consider the same sizes n as in [5], but allow the
condition number to go up to a2 10'° as compared to ~ 10° in [5]. Since the code from [5] is not available
to us, we can not make a direct comparison.

These experiments suggest the following first conclusion. The original KR method is extremely efficient,
but it may fail completely on more difficult, badly conditioned problems, as can be seen in Tables 8 and 9.
The modified KR method typically requires a slightly larger number of solves and also goes into recursion
(of very small depth). The total number of solves is not much larger than in the original KR method for
well-conditioned problems. It stays typically below 50 for problems with cond(Q) ~ 10° and it may rise
up to 250 for problems with large condition number cond(Q) ~ 10'°. Compared to Matlab’s large scale
solver however, it is both much faster and also more accurate on difficult problems.
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n | dens | cond(Q) [KR] [modified KR| [quadprog]
time iter | fail time iter | solve | mds time iter error
5000 0.1 ~ 10° 9.23 | 4.6 0| 15.96 | 4.4 6.9 6.14 | 152 | 29-107 %
5000 0.1 ~10° || 15.35 | 13.7 01 3377 | 96| 456 40.00 | 55.0 | 1.1-107°
5000 0.1 ~10'° || 33.06 | 33.4 0| 66.17 | 12.3 | 124.4 163.75 | 1134 | 9.1-107°
0
4

5000 | 0.01 ~ 102 3.79 | 4.4 6.51 | 4.1 6.3 0.73 | 13.7 | 34-10711
5000 | 0.01 ~ 10° 4.71 | 16.8 10.64 | 10.9 | 47.0 6.78 | 58.7 | 4.3.107°
5000 | 0.01 ~ 10 - -] 10| 15.05 | 9.7 | 96.0 40.8 | 112.6 | 2.4-107°
5000 | 0.001 ~ 10° 0.09 | 5.1 0 0.17 | 4.5 6.7 022 | 113 | 1.3-1078
5000 | 0.001 ~ 10° 0.10 | 8.6 5 022 | 63| 139 1.87 | 36.3 | 88-1077
5000 | 0.001 ~ 10%° - - | 10 037 | 83| 213 11.4 | 489 | 5.8-107°
10000 | 0.001 ~ 102 3.0 | 4.9 0 4.66 | 4.1 6.4 0.60 | 12.6 | 2.5-107°
10000 | 0.001 ~ 10° 1.77 | 11.0 9 931 | 83| 253 6.40 | 516 | 1.2-107°
10000 | 0.001 ~ 101° - - | 10 || 16.81 | 10.0 | 52.8 4732 | 822 | 1.7-107°

N = Ol = = W o N —=O

Table 8: Random problems in the style of [5] with one-sided bounds. The first iter-column gives the
average number of outer iterations for those problems that were solved successfully by the KR-~Algorithm.

n | dens | cond(Q) [KR] [modified KR| [quadprog]

time | iter | fail time | iter | solve

time iter error

=
&

5000 0.1 ~10% || 13.04 | 6.1 0 16.68 | 4.2 12.0 0 16.32 | 19.0 | 6.1-107 !
5000 0.1 ~10° || 43.97 | 26.1 0 43.21 | 14.0 | 66.5 1 115.03 | 40.6 | 7.9-1077
5000 0.1 ~ 100 - - | 10 || 104.20 | 14.3 | 258.1 2| 401.83 | 98.1 | 8.0-10°°¢
5000 | 0.01 ~ 102 457 | 6.2 0 583 | 3.6 10.6 0 2.19 | 189 | 6.9-1071°
5000 | 0.01 ~ 10° 8.64 | 27.6 5 8.83 | 12.0 | 57.1 2 11.34 | 42.1 | 94-1077
5000 | 0.01 ~ 10%° - -1 10 21.11 | 10.5 | 157.9 3 31.0 | 581 | 9.8-107°
5000 | 0.001 ~ 10° 0.15 | 5.8 0 0.15 | 3.6 9.4 0 0.96 | 19.0 | 9.1-1078
5000 | 0.001 ~ 10° 0.25 | 12.8 4 023 | 6.7 19.2 1 437 | 442 | 35-107°
5000 | 0.001 ~ 10%° - -1 10 030 | 74| 256 2 9.90 | 45.2 | 6.4-107°
10000 | 0.001 ~ 102 3.28 | 6.0 0 311 | 3.6 9.6 0 1.71 | 172 | 7.3-107°
10000 | 0.001 ~ 10° - -] 10 507 | 89| 315 2 9.32 | 474 | 3.3-1076
10000 | 0.001 ~ 10'° - -1 10 10.18 | 10.7 | 62.7 4 16.49 | 49.2 | 2.0-107°

Table 9: Random problems in the style of [5] with box constraints. The first iter-column gives the average
number of outer iterations for those problems that were solved successfully by the KR-Algorithm.

6.2 Harmonic Equation

We now consider problems where the data are not random, but come from applications in mathematical
phyics. There are several problem types which lead to optimization problems of the form (1), where the
Hessian @Q,,, represents a discretization of the Laplace operator, acting on a square grid of size m x m. The
linear term and the boundary conditions describe the precise nature of the problem. Moré and Toraldo
[19] discuss several such applications. We now consider the obstacle problem from section 7.1 in [19]
and use the same setup to make the results comparable. Instances of this type are also contained in the
CUTEr [10] and CUTEst [11] test library and are denoted by “OBSTCL*”. In this collection however we
have m < 125. The elastic-plastic torsion problem as well as the journal bearing problem from [19] both
have the same Hessian @Q,,. We do not include computational results for these classes, as they are very
similar to the obstacle problem. We summarize the results of our runs on obstacle problems with one- and
two-sided bounds in Tables 10 and 11 respectively.

As a second application of the harmonic operator we consider the circus tent problem taken from
Matlab’s optimization demo as an example of large-scale quadratic programming with simple bounds.
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m [KR| [modified KR]
iter | time | largest system || iter | solve | time | largest system | mds
16 31 0.01 76 3 3| 0.01 76 0
32 41 0.02 340 4 51 0.02 684 0
64 4| 0.05 1519 4 5| 0.06 1519 0
128 41 0.19 6385 4 51 0.24 6385 0
256 4| 1.04 26236 4 5] 1.25 26236 0
512 4| 7.13 106184 4 5| 8.62 106184 0

Table 10: Obstacle problem from [19] with one-sided bounds. The matrix @,, represents a discretization
of the harmonic operator acting on a square grid of size m x m.

m [KR] [modified KR]
iter | time | largest system || iter | solve | time | largest system | mds
16 31 0.02 143 3 41 0.02 143 0
32 41 0.03 675 3 6| 0.03 675 0
64 5| 0.08 3000 5 81 0.10 3000 0
128 41 0.28 12573 4 6| 0.39 12573 0
256 4| 2.02 51484 5 7| 2.78 51484 0
512 4 1 16.68 208357 5 7| 23.63 208357 0

Table 11: Obstacle problem from [19] with two-sided bounds. The matrix @,, represents a discretization
of the harmonic operator acting on a square grid of size m x m.

The problem is to build a circus tent to cover a square lot. The tent is elastic and is to be supported by
five poles. The question is to find the shape of the tent at equilibrium, that corresponds to the minimum
of the energy computed from the surface position and squared norm of its gradient. The problem has only
lower bounds imposed by the five poles and the ground. We also solve this problem with quadprog from
MATLAB. In Table 12 we compare it with the modified KR-Algorithm for different grid sizes m. We note
that in all cases our approach is extremely efficient. Since the matrix @, is very sparse for this problem,
we are able to solve problems where the system size is bigger than 200,000.

m n optimal [quadprog| [modified KR|
objective value || iter time || iter | solve | time | largest system | mds
50 2500 0.4561 15 0.34 2 1 0.02 2480 0
100 10000 0.3420 17 1.39 2 1 0.12 9980 0
200 | 40000 0.2938 19 12.58 2 1 0.97 39980 0
300 | 90000 0.2647 21 45.24 2 1 3.29 89980 0
400 | 160000 0.2519 22 | 110.12 2 1 7.95 159980 0
500 | 250000 0.2425 24 | 219.92 2 1| 16.89 249980 0

Table 12: Comparison of the modified KR-Algorithm with Matlab’s large-scale reflective trust-region
algorithm on the circus tent problem.

6.3 Biharmonic Equation

As a second class of problems with a physical interpretation we consider a thin elastic square plate, clamped
on its boundary with a vertical force acting on it. The plate deforms but is constrained to remain below
an obstacle. Discretizing again the square into an m x m rectangular grid, we obtain a problem of the form
(1), with matrix Q,, of order m? representing the discretized biharmonic operator. For specific details
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about the force acting on the plate and the obstacle, we refer to [17]. We conducted experiments for m
going up to 512 and summarize the results in Table 13

m [KR] [modified KR]
iter time | largest system || iter | solve time | largest system | mds
16 7 0.03 139 7 12 0.03 139 0
32 10 0.08 647 9 15 0.10 647 0
64 6 0.19 2738 6 7 0.23 2738 0
128 7 0.95 11251 7 8 1.15 11251 0
256 8 8.12 45580 8 12| 12.25 45580 0
512 12 | 117.27 183486 12 20 | 196.99 183486 0

Table 13: Biharmonic Equation: Comparison with [17]. Here the matrix @,, is the discretisation of the

biharmonic operator on a square m x m grid of order m?2.

Since the original KR-method has no difficulty with this problem, the safeguarding procedure in the
modified method causes an increase in solves. We note that even though the dimension m? as well as the
largest system being solved is quite large, we are still able to solve this problem rather quickly, because of

the sparse structure of Q.

6.4 Sparse Quadratic 0-1 Optimization Problems by Pardalos and Rodgers

The box-constrained version of the problem, as analyzed in the appendix, has applications in combina-
torial optimization. Quadratic 0-1 optimization is one of the fundamental NP-hard problems in discrete
optimization. It consists of minimizing J(z) on {0,1}", but @ need not be semidefinite. The integrality
conditions on z imply that 27 = x; can be used to convexify the objective function. A possible convex
relaxation is to minimize

577(Q = Auin( @Dz + (0 + Anin( @) a7)

on the box 0 < z < 1. Both objective functions agree on 0-1 vectors z. This opens the way to solve the
original integer problem by solving the relaxation (17) using Branch-and-Bound techniques. This amounts
to solving a problem of type (17) in every node of the branching tree. The nodes of the branching tree
indicate which of the variables are fixed to their bounds. Since the number of nodes in such branching trees
may become quite large, it is critical to solve each subproblem as quickly as possible. For more details on
solving quadratic 0-1 problems see e.g. [3]. In Table 14 we provide computation times to solve (17) by
the interior point solver of CPLEX and our new method averaged over 10 runs. Our method is faster by
an order of magnitude, especially for larger instances. () was generated by the Sparse Problem Generator
of Pardalos and Rodgers [20]. Its diagonal coefficients are in the range [—100,100] and the off-diagonal
entries are in the range [—50, 50].

n | cond(Q) | dens(Q) || [CPLEX-IP] || [modified KR]
iter time || iter time

1000 ~ 108 1 8.0 3.16 || 6.0 0.41
2000 | ~2-108 d | 8.0 3836 | 6.0 2.19
5000 | ~5-108 1 80| 533.44 | 7.0 31.95

Table 14: Convex quadratic minimization over the unit cube. Comparison with interior point methods.
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6.5 Lack of Strict Complementarity

As a final experiment we now consider problems where strict complementarity does not hold at the opti-
mum. We follow the setup introduced by Moré and Toraldo [18]. In this paper the dimension n = 100 of
the problem is kept fixed but the data are generated in such a way that both the condition number of @
and the values of dual variables corresponding to active bounds are varied. Specifically, ncond € {3,12}
indicates condition numbers of order ~ 103 and ~ 10'2 respectively. Similarly, ndeg € {3,12} results in
multipliers o; ~ 107 "9°8 for active constraints z; — b; = 0.

We note that the modified KR-method solves substantially more problems within a given number of
iterations, and that the number of iterations is never more than 12. For details see Table 15.

6.6 Comparison with Gradient Projection Methods

We conclude the computational section by providing a comparison of computation times between the
following codes, all implemented in Matlab, and running on the same machine.

e [KR] and [modified KR|,

e [CTK], a Matlab implementation of the projected gradient method, from C. T. Kelley’s website
http://wuwd.ncsu.edu/"ctk/matlab_darts.html,

e [MT], a basic implementation of the method proposed by Moré and Toraldo in [18]. It combines a
standard active set strategy with the gradient projection method. The code from [18] is not publicly
available, so we use our own Matlab implementation of the approach from [18].

We provide the computation times as well as the number of system solves for [modified KR| and [MT]. In
case of [KR] it is the same as the number of iterations, and [CTK] does not solve any linear system.

We first note that our safeguard mechanism to insure global convergence increases the computation
times only moderately. While the method [MT] is competitive on the obstacle problem with only one-sided
bounds, it is clearly outperformed in all other cases. The code [CTK] is more efficient than [MT] for the
obstacle problem with two-sided bounds, but it is much slower than the two versions of [KR|. We also note
that both [CTK] and [MT] are quite sensitive to possible ill-conditioning of the data, while both versions
of [KR] behave quite robustly. The last two lines provide timings on random instances like in Table 6,
again averaged over 2000 runs and problem dimension n = 2000.

7 Conclusion

We presented an extension of the infeasible active set method described in [17]. We provided an in-
depth analysis of the convergence behaviour of the KR-Algorithm and proved global convergence of the
modified KR-method for strictly convex quadratic programming problems without a condition on com-
plementarity. Moreover we demonstrated the efficiency of the modified KR-Algorithm by comparing it to
the KR-Algorithm and the CPLEX interior point and active set solvers. Beside its simplicity (no tuning
parameters), the modified KR-method offers the favorable features of standard active set methods like
the ability to find the exact numerical solution of the problem, and the fact that at each iteration level
the size of the linear system which must be solved is determined by the currently inactive set, which can
be significantly smaller than the total set of variables. Additionally the modified KR-Algorithm requires
even significantly less iterations than interior point methods to find the optimal solution, independent of
initialisation, singularity of the system matrix and the number of variables. Thus the presented algorithm
inherits and even improves the preferable features of existing methods for problem type (1) and is com-
petitive and often superior to most of them.

Acknowledgement: We thank two anonymous referees for their constructive comments and suggestions
for improvement leading to the present version of the paper.
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iter [KR] [modified KR]
ndeg 3 12 3 12 3 12 3 12
ncond 3 3 12 12 3 3 12 12
1 83 94 95 100
2 1625 1585 535 534
3 133 2 6302 6320 2161 2156
41| 3194 61 1958 1946 2228 2226
5 5646 27 760 19 32 55 1206 1219
6 || 1027 578 2372 292 731 727
7 3349 3648 1398 985 816
8 4351 2181 3280 881 994
9 1628 818 3116 351 848
10 67 142 1433 43 335
11 15 415 1 43
12 1 42 1 2
total time || 14.59 23.22 21.28 25.50 || 12.14 15.58 26.16 29.79

Table 15: Problem size is fixed to n = 100. Each column represents 10,000 random instances with the
specified combination of condition number and degree of degeneracy given by (ncond,ndeg). The numbers
in a line corresponding to iter =k indicate, how many of the problems were solved with k iterations. The
algorithm was stopped, once the violation of primal and dual feasibility was below tol = 1072 elementwise.

Obstacle problem with one-sided bounds

[KR] [modified KR] [CTK] [MT]
m || iter | time || iter | solve | time time solve | time
64 4| 0.05 4 51 0.06 0.32 14 | 0.04
128 41 0.19 4 51 0.24 3.73 25| 0.24

Obstacle problem with two-sided bounds

[KR] [modified KR] [CTK] [MT]
m || iter | time || iter | solve | time time solve | time
64 51 0.08 5 8 1 0.10 0.44 423 | 1.11
128 4| 0.28 4 6 | 0.39 5.52 1433 | 19.08

Biharmonic equation

[KR] [modified KR] [CTK] [MT]
m || iter | time || iter | solve | time time solve | time
32 10 | 0.08 9 15 | 0.10 4.96 532 | 0.53
64 6 | 0.19 6 71 0.23 26.11 1739 | 8.24

Random data from Table 6

[KR] [modified KR] [CTK] [MT]
cond(Q) || iter | time | iter | solve | time time solve | time
~10% || 5.84 | 0.13 || 5.07 | 9.48 | 0.17 - || 302.09 | 2.89
~10% || 9.03 | 0.17 || 6.67 | 12.10 | 0.22 - || 354.69 | 3.21

Table 16: Computational comparison of [KR], [modified KR| and two gradient projection methods from
the literature.
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A APPENDIX

A.1 Convergence Argument for Box Constraint Convex QPs

The convergence argument for the modified KR-method presented in Section 4 can be generalized to
convex QPs with box constraints a < x < b as follows.

We introduce an additional active set C with z¢ = a¢ and dual variables . The KKT system for
box-constrained convex QPs is given by

Qr+q+a+vy=0,

ao(b—x)=0,
vyo(a—z)=0,
b—x>0,
r—a >0,

a >0,

7 <0.

To simplify notation let us denote KKT(A,C) as the following set of equations:
KKT(A,C) Qr+qg+a+vy=0, za=ba, xc=0ac, az=7r=0

Let us call the pair (A,C) with AUC C N a primal feasible pair, if the solution z to KKT(A, B) is
primal feasible, a < x < b.
Suppose that (A, B) is a primal feasible pair. Then we start a new iteration with the sets

Bs:={ieA:q; >0}, Ds:={ieC:v <0} (18)

The pair (B,, Ds) does not need to be primal feasible, because [z, a,y] =KKT(Bs, D,) may have i € B,
such that x; > b; or i € D, such that 2; < a;. To turn it into a primal feasible pair (B, D), we carry out
the following iterations.

B+ By, D+ D,
while (B, D) not primal feasible

This iterative scheme will clearly terminate because B and D are augmented by adding only elements of
J. The modified KR-method for box constraints starts with a primal feasible pair (A,C), then generates
a new primal feasible pair (B, D) as described above. Then a new iteration is started with (8, D) in place
of (A,C).

We are now taking a closer look at the change of the objective function between two consecutive
iterations given by the primal feasible pairs (A,C) and (B, D).

We let [z, a, 7] =KKT(A,C) and [y, 5, 6] =KKT(B, D) be given. Using Lemma 1 and Qy+q+8+6 = 0,
we conclude

J) —J@) = 5 (0~ 9)TQw —y) + (x— )T (5 +0). (19)

The first term on the right hand side is nonpositive, so we need to investigate the second one in detail.
In order to do so, we have to take a closer look at how (Bs,Ds) and (B,D) change relative to (A,C).
Formally, the situation looks as indicated in Table 17.

To explain this diagram, we note that by definition we have B; C A, D, C C and J; := N\ (Bs UDy).
The extension of Bs to B is done by adding elements from A \ B, which are contained in Bj, elements
from C \ Ds, which are contained in By and elements from Z, which are contained in Bs. Along the same
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A C \ z
BS js DS jS
B |BL[Dy [ 7 | D [D1 [ B[] Js[Bs | Ds

Table 17: The change from the primal feasible set 4 to the primal feasible set B = B; U B; U Bs.

lines D, is extended to D and (B, D) then form a primal feasible pair. Finally we have J3 = A\ (Bs U
B1UDy), Jo=C\ (DsUB2UD;) and J3 =T\ (B3 UD3). What do we know about [z, a,v] =KKT(A,C)
and [y, 8,0] =KKT(B,D)? Clearly x4 = ba, x¢ = ac, az < x7 < by and oz = a¢ = vz = 4 = 0.
The definitions of Bs and Dy yield ag, > 0, yp, < 0 and asp, < 0, ya\p, > 0. Further we have
ys =bp, yp =ap, a7 <yy <by and 7 = fp = d7 = dp = 0. This is summarized in Table 18.

A C s

Bs | By | Dy J1 Dy, | D | B T2 J3 Bs Ds
r|=b|=b|=0 =b =a|=a|=a =a a<z<b|la<z<b|la<zxz<b
y|=b|=b|=a|la<y<b|=a|=a|=bla<y<b|la<y<b =0 =a
a | > <0 | <0 <0 =0|=0|= 0 0 = =0
B ? ? =0 =0 = =0 ? =0 =0 ? =
y|=0]|=0]|= = <0|>0]>0 >0 =0 0 0
61 =0]=0 ? =0 ? ? =0 =0 0 0 ?

Table 18: Information on z, y, «, 3, v and § associated to A, B, C and D. The questionmarks indicate
that the signs of 5 and § can not be specified for the respective sets.

Now we can provide some additional useful properties for two consecutive iterations given by the
feasible pairs (A,C) and (B, D).

Lemma 10. Let (A,C) be a primal feasible pair. Then Bs C A, Ds C C and (Bs = A) A (Ds = C) if
and only if (A,C) is optimal. If (A,C) is not optimal, then (A # Q) Vv (C # 0), (A # B)V (C # D) and
x—y#0.

Proof. Bs C A and Ds; C C hold due to (18). If (A,C) is optimal then all elements in A and C are dual
feasible and hence (Bs = A) A (Ds =C). If (B; = A) A (Ds = C) then all elements in A and C are dual
feasible. As the algorithm ensures all other KKT conditions including primal feasibility throughout all
iterations, (A, C) is optimal. If A = C = ) then the unconstrained optimum is feasible and hence (A,C) is
optimal.

Now let’s suppose (A, C) not optimal and (A = B)A(C = D). Then J; = Jo = Bo =Dy = B3 =D35 =)
and hence J3 = J =Z, By = A\ Bs # () and D; = C\ Ds # 0. Due to the workings of the modified
KR-method the following implications hold

[z,0,79] = KKT(A,C) = ap, <0Avp, >0,

(20)
ly, 8,0] = KKT(Bs,Ds) = 85, =0A~p, =0.
As 7 = J we can substitute the primal variables associated with Z by
r7 = —Q7'(qz + Qz.5.05, + Qzp.ap, + Q1.5,b5, + Q7.D,0D,), (21)

yr = —Q7'(¢z + Qz.8.b5. + Qz.p.0p, + Q1.8,Y8, + QT D, YD, )-
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Throughout the algorithm the equations Qz + ¢ + o + v = 0 hold. Using (20) we obtain

ba, ba,
bBl bBl
QBN | ap, | +q5, = —ap, >0, Qp, N | ap, | +ap, = —dp, <0,
ap, ap,
Trr Tr
bs, bs,
YB, YB,
QN | ap, | +q5, = —PB, =0, Qp,.~ | ap, | +gp, = —dp, = 0.
YD, Yo,
Yz Yz

Next applying (21) to the above equations yields
QB,.8.b5, + Qp, b5, + Qp,.p.ap, + Qp, pap, — Qp, Q7" (47 + Qr.5.b5,+
Qzp.ap, + Qz 5,05, +Qzp,ap,) + a5, > @B, B.b5, + QB,YsB, + @B, D.0D,+
QB,,0.YD: — QB 7Q7 " (97 + Qz,8,b5, + Qz.p.ap, + Q1,8,Y5, + QTP YD)) + 81 »
and
Qp,.,8.b5, + Qp,.5,b5, + Qp, DD, + QD 0D, — QD, Q7" (97 + Q78,5+
Qzp.ap, + Qz 5,05, + Qzp,ap,) + qp, < Qp, B.bs, + Qp, B,Y5, + Qp, D,0D, +
Qp,yp, — Qp, 7Q7 ' (a7 + Qz,8.b5, + Qz,p.ap, + Q1.5,Y8, + QLD YD) + 4D, -

Simplifying the above inequalities gives
(@B, — @B, 1Q7"'Qz.8,)bs, + (QB, D, — Q8,707 Q1,0 )ap, >
(QB, — Q5 7Q7'Qz.58,)ys, + (QB,.p, — QB 7Q7 ' Q1.D,)YD, -
and
(@p, — @p, 1Q7 ' Qz.p,)ap, + (Qp,.5, — Qp, 7Q7 ' Qz.8,)b5, <
(Q@p, — Qp, 1Q7'Qz.p,)yp, + (@D, .8, — Qp, 7Q7 ' Qz,8,) Y5 -

Now adding up the two inequalities yields

QBl 7Q51,D1 o QBl,I -1 _ bBl —YB,
K—Qm,& Qo ) (—QDLI> Oz (@ le)} (m _ apl) > 0. (22)
The matrix
Q5, -Qp,p,\ ([ QB.1 . -
(_Q'DhBl Qp, ) <_QD1,I> QI (QI’Bl QI’Dl) ’ (23)

is positive definite. To see this we use

@B, QB 0. @B,z
) =0, and M = | —Qp, B, Qp, —Qp,z | =0,
Q1.8 —Q1.p, Q1

in the Schur-complement lemma. The two above matrices are positive definite because

( @B, —QB,,D,
—Qp, .8 Qp,

T T
@B, @B,.,p @B,z B, B, B, B,

My :=|Qp, B, @b, Qp,.z]| >0, and xp, | Mao|ap, | =|—2p, | M| —2p,
Qzs, Qzp, Q1 Tz r7 r7 Tz
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To assure (A,C) = (B, D) the inequality

(bsl - yBl) <o, (24)

Yp, — ap,

has to hold. Combining (22) and (24) yields a contradiction to the positive definiteness of the matrix in
(23):

-
bs, ysl) [( @B, -Qs, D1> < QB,,1 ) 1 } (bBl y31>

' — ' — <0. (25

(ypl — ap, —Qp, .5, Qp, —Qp, 1 Oz (QI’Bl QI’DI) Yp, —ap,) (25)

Finally using Table 18 we have a < z7 < bz, a < y7 < by, x4 =ba, x¢c = ac, yg = by, yp = ap

and hence x —y # 0 for (A,C) # (B, D). O

Asz—y=0on B,UBLUD,UDy, 8=0o0on HUJLUJT3UD;,UD; UDyUD3 and § = 0 on
J1U T U J3UB, UBy UBy U Bs it follows that (x - y)Tﬁ = ZieBzuBg(ﬂU - y)z,BL and (.13 — y)Té =
> ieDyups (T — Y)idi. Since (z —y); < 0 on By UBs and (z — y); > 0 on Dy U D3, the contribution of
(x —y)T(B + 6) is guaranteed to be nonpositive in case 3 > 0 on B, U Bz and § < 0 on Dy UD3. We
summarize the discussion in the following lemma.

Lemma 11. Let xz,y,a, 3,7,0 and Bo, B3, Dy, D3 be as above. Then

)~ T@) = 5 -9 Q@ -y~ Y @-wbit Y @y

1€EB2UB3 i€DyUD3
Moreover, (v — y)B,uB; < 0 and (z — y)p,up; > 0.

In general we have no means to avoid J(y) > J(x) using the current algorithmic setup. To avoid
cycling, we therefore need to take additional measures in case J(y) > J(z). Let us assume (A,C) not
optimal for the following case distinction. We first recall that in this case |A| 4 |C| > 1 due to Lemma 10.
We consider the following cases separately. Let x, y, «, 8, v, 6 and A, B, C and D be as above.

Case 1: J(y) < J(z).
In this case we can set A < B, C < D, and continue with the next iteration.

Case 2: J(y) > J(z) and |A| +|C| = 1.

The pair (A,C) with AUC = {j} is primal feasible. Since x is primal feasible, but not optimal, we
must have o; < 0if j € A and v; > 0 if j € C. Thus the objective function would improve by allowing
z; to move away from the respective boundary. Hence in an optimal solution it is essential that x; < b;
if j € Aand x; > a; if j € C. Thus we have a problem with only 2n — 1 constraints which we solve by
induction on the number of constraints.

Case 3: J(y) > J(z) and |A| +|C| > 1.

In this case we will again solve a problem with less than 2n constraints to optimality. Its optimal
solution will yield a feasible pair (B,D) and a primal feasible y with J(y) < J(z). Our strategy is to
identify two sets Ag C A and Cy C C with Ay UCy # 0 such that x is feasible but not optimal for the
subproblem with x4, = ba,, ¢, = ac,, T4

0 < b-r‘fo’ xéo

=ac,, v4, < bg,, Te, > ag, to optimality yielding a new primal

> ag,. We are then (recursively) solving the
smaller subproblem with x4, = b4,, xc,
feasible pair (B, D) with improved objective value.

We choose Ajg as a subset of A and Cy as a subset of C with (B8; UBs UD; UDsUJ1 UJ2)\ (Ao UCy) #£ 0
and AgUCy # . Note in particular that By UByUD; UDsU J1 U J; is nonempty due to Lemma 10. Hence
the solution [z, o, y] =KKT(A,C) is feasible for x4, = ba, A ¢, = ac,, but not optimal, because a; < 0

fori € (Bl UDQUJl)\Ao, v >0 fori € (Dl UBQUJQ)\CO and (Bl UB,UD1UDsU T, UJQ)\(AOUCO) 75 0.
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Now let (Bo, Do) be the optimal set of the subproblem, given by x4, = ba,, Tc, = ac,, Tz, <
bg,» Te, = ac,, which can be determined by induction. We set B := Ag U By, D := Cy U Dy and get
ly, B,9] =KKT(B,D). By construction, (B,D) is feasible, and J(y) < J(x) because y is optimal for the
subproblem.

We summarize the modified KR-method for box constraints, which produces primal feasible iterates in
each iteration, in Table 19. Since the objective value strictly decreases in each iteration, we have shown
the following result

Theorem 12. The modified KR-Algorithm for box constraints as given in Table 19 terminates in a finite
number of iterations with the optimal solution.

Modified KR-Algorithm for box constraints

Input: Q= 0,a, b, deR*. AUCCN, ANC=10.
Output: optimal active pair (A,C).

z =KKT(A,C).
while (A, C) not primal feasible:
A+ Au{ie A:xz; > b}
C+CU{ieC:z <a}.
z =KKT(A,C).
endwhile
[, 7] =KKT(A,C)
while (A, C) not optimal
Bs+— {ieA:a; >0}; B+ B;.
D, {icC:v <0}:D+« D,.
y =KKT(B, D).
while (B, D) not primal feasible
B+ BU{i€B:y >b}.
D(—DU{’LE@]/,LSG,L}
y =KKT(B, D).
endwhile
Case 1: J(y) < J(z)
A+ B, C«+ D.
Case 2: J(y) > J(x) and |A| +|C| = 1.
Let (Aopt; Copt) be the optimal pair for the subproblem with the bound on AUC = {j} removed.
A Aopt, C < Copy is optimal, stop.
Case 3: J(y) > J(z) and |A|+|C| > 1
Ao C A, Cy CC, Ay UCy # B with (BlUBQUD] UD U UJQ)\(AOUCO) #@
Let (Bo, Do) be the optimal pair for the subproblem with x4, = ba,, ¢, = ac,, v 4, < b4,, ¢, > ac,-
AF.AoLJBQ, C <+ CyUDy.
[a,7] =KKT(A,C)
endwhile

Table 19: Description of the modified KR-Algorithm for box constraints.
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